Why setting this goal?
Water scarcity affects over 40% of the world’s population. This is an alarming figure that is expected to increase as global temperatures rise due to climate change.
This is done despite the fact that 2.1 billion people have gained access to improved water sanitation. Since 1990, the decrease in the supply of drinking water is a major problem that affects all continents.
Therefore, it is useful to define this objective of SDG 6.
In 2011, 41 countries experienced water pressure – 10 of which are on the verge of depleting their renewable freshwater supply and must now rely on alternative sources.
In 22 countries, mainly in North Africa, Western, Central and Southern Asia, the level of water stress is above 70%. This indicates a high probability of future shortages. Worsening dryness and desertification are already exacerbating these trends.
By 2050, at least one in four people are expected to be affected by recurrent water shortages.
Water scarcity, flooding and lack of proper wastewater management also hinder social and economic development. Increasing water efficiency and improving water management are essential. This would help balance the competing and increasing demands for water from various sectors and users. In addition, it is essential to increase water efficiency and improve water management. This would balance the competing and growing demands for water from various sectors and users.
What is this sustainable development goal?
As a result of the above-mentioned findings, the SDG 6 objective on sanitation and drinking water has been set for 3 major themes:
- drinking water
- sanitation
- wastewater treatment.
Drinking water
Clean, accessible water for all is an essential part of the world we want to live in. Indeed, there is enough fresh water on the planet to achieve this.
However, due to poor economic conditions or infrastructure, millions of people, including children, die each year from diseases associated with cancer:
- water supply
- sanitation
- improper hygiene
In addition, the safety and accessibility of drinking water are major concerns around the world.
Consumption of water contaminated with these components can lead to health risks:
- infectious agents
- toxic chemicals
- radiation threats
Improved access to clean water can translate into tangible improvements in health.
Wastewater treatment
Wastewater treatment is the process of converting wastewater:
– water that is no longer needed or usable
– into bilge water that can be discharged into the environment.
These waters are formed by certain activities such as :
- bath
- washing
- the use of toilets
- rainwater runoff
In addition, wastewater is full of contaminants, including bacteria, chemicals and other toxins. Its treatment is intended to reduce contaminants to acceptable levels in order to make the water safe for release into the environment.
Sanitation
One in three people live without proper sanitation. This results in unnecessary illness and death.
And while huge strides have been made in providing access to clean water, the lack of sanitation undermines this progress.
Indeed, if we provide affordable equipment and hygiene education, we can end this senseless suffering and loss of life.
But what exactly is sanitation?
Sanitation refers to the provision of facilities and services for the safe management of human excreta from toilets. This includes :
- containment
- storage
- on-site treatment or transport
- safe use or disposal.
More generally, sanitation also includes the safe management of solid waste and animal waste.
Inadequate sanitation is therefore a major cause of infectious diseases such as cholera, typhoid and dysentery throughout the world.
It also contributes to stunted growth and impaired cognitive function. In addition, it impacts well-being through school attendance, anxiety and safety, with lifelong consequences, especially for women and girls.
Improved sanitation in households, health facilities, and schools underpins progress on a wide range of economic development and health issues:
- universal health coverage
- the fight against antimicrobial resistance
What are the goals and indicators defined to meet the sanitation and drinking water goal?
As with the other Sustainable Development Goals, targets and indicators have been defined to monitor progress towards the goals.
Targets | Indicators | |
6.1 | By 2030, ensure universal and equitable access to safe and affordable drinking water. | Proportion of population using safely managed drinking water services. |
6.2 | By 2030, ensure access for all to clean, safe and equitable sanitation and hygiene and end open defecation, paying particular attention to the needs of women and girls and people in vulnerable situations. | Proportion of population using safely managed sanitation services, including hand-washing facilities with soap and water |
6.3 | By 2030, improve water quality by reducing pollution, eliminating spills and minimising discharges of chemicals and hazardous materials, halving the proportion of untreated wastewater and significantly increasing recycling and safe reuse worldwide. | Proportion of wastewater treated safely Proportion of water masses with good environmental water quality |
6.4 | By 2030, significantly increase water use efficiency in all sectors and ensure sustainable freshwater abstraction and supply to address water scarcity and significantly reduce the number of people suffering from water scarcity. | Change in water use efficiency over time Water pressure level: freshwater withdrawal as a proportion of available freshwater resources |
6.5 | By 2030, implement integrated water resource management at all levels, including through appropriate cross-border cooperation. | Degree of implementation of integrated water resources management (0-100) Proportion of the transboundary tank area with an operational water cooperation mechanism |
6.6 | By 2020, protect and restore water-related ecosystems, including mountains, forests, wetlands, rivers, aquifers and lakes. | Changes in the extent of water-related ecosystems over time |
6.A | By 2030, increase international cooperation and support for capacity building in developing countries in water and sanitation activities and programmes, including technologies for collection, desalination, water efficiency, wastewater treatment, recycling and reuse | Amount of official development assistance related to water and sanitation that is part of a government-coordinated spending plan. |
6.B | Support and strengthen local community participation in improved water and sanitation management | Proportion of local government units with established and operational policies and procedures for local community participation in water and sanitation management |
How can this goal be achieved?
- adequate infrastructures
- sanitary facilities
- water treatment and to promote hygiene
Physical water treatment
It is a physical method used for cleaning wastewater. Processes such as screening, sedimentation and skimming are used to remove solids. Moreover, no chemicals are involved in this process.
One of the main techniques for physical treatment of wastewater includes sedimentation, which is a process of suspending insoluble/heavy particles from the wastewater. Once the insoluble material has settled to the bottom, the pure water can be separated.
Another effective physical water treatment technique involves aeration. This process consists of circulating air through the water to provide oxygen.
The third method, filtration, is used to filter out all contaminants. Special filters can be used to pass wastewater and separate contaminants and insoluble particles. The sand filter is the most commonly used filter. Grease on the surface of some wastewater can also be easily removed by this method.
Biological water treatment
It uses a variety of biological processes to break down the organic matter in the wastewater, such as:
- the soap
- human waste
- oils
- foods.
Microorganisms metabolize the organic matter in the wastewater during biological treatment. It can be divided into three categories:
- Aerobic processes: bacteria decompose organic matter and convert it into carbon dioxide that can be used by plants. Oxygen is used in the process.
- Anaerobic processes: fermentation is used to ferment waste at a specific temperature. Oxygen is not used in the anaerobic process.
- Composting: a type of aerobic process where wastewater is treated by mixing it with sawdust or other carbon sources.
Secondary treatment removes most of the solids in the wastewater, but some dissolved nutrients such as nitrogen and phosphorus may remain.
Chemical water treatment
As the name suggests, this treatment involves the use of chemicals in the water. Chlorine, an oxidizing chemical, is usually used to kill the bacteria that break down the water by adding contaminants.
Another oxidizing agent used to purify wastewater is ozone. Neutralization is a technique that involves adding an acid or base to bring the water to its natural pH of 7, which prevents bacteria from reproducing in the water, making it pure.
Mud treatment
It is a process of solid-liquid separation that requires the lowest possible residual moisture in the solid phase and the lowest possible residual solid particles in the separated liquid phase.
Let’s take for example the dehydration of mud from industrial wastewater or sewage plants. In fact, the residual moisture of the dewatered solids determines the disposal costs and the quality of the center determines the pollutant load returned to the treatment facility. You should minimize both.
A solid-liquid separation device such as a centrifuge is used to remove solids from wastewater.
Wastewater has a great impact on nature and it is important to treat it efficiently. By treating wastewater, you not only save the creatures that feed on it, but you also protect the planet as a whole.
What regulations are in place to achieve this goal?
The policies that enable the goal to be achieved are referenced in the Right to Water and Sanitation.
SGDs must be consistent with the Rio Declaration and compatible with international law. As a matter of fact, it is required to respect the limits set (quantity of pollutant) by the regulation and to meet the final date of 2030 to achieve these objectives.
What is the role of water treatment operators in achieving this goal?
The players are global partnerships including:
- worldwide commitments
- multi-stakeholder partnerships
- the overall commitment of all stakeholders to achieve the Sustainable Development Goals.
In addition, the actors are international institutions and governments, local authorities, NGOs and civil society, the scientific community and the private sector.
There are a total of 335 actors involved in ensuring the availability and sustainable management of water and sanitation for all.
Indeed, these actors deal with SDG 6 but also with some other items. Climate KIC (Partner), The Great Bubble Barrier (the private sector) is helping governments and businesses stop plastic pollution in rivers and canals around the world.
In addition, the Surfrider Foundation Australia is a registered non-profit organization that wants to reduce the amount of plastic going into the water. It is focused on protecting Australia’s waves and beaches through :
- conservation
- activism
- research
- education (C.A.R.E)